Quasi-static Eocene–Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling

Matthew J. Kohn a,*, Caroline A.E. Strömberg b, Richard H. Madden c, Regan E. Dunn b, Samantha Evans a, Alma Palacios a, Alfredo A. Carlini d

a Department of Geosciences, Boise State University, Boise, ID 83725, USA
b Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
c Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
d Departamento de Paleontología de Vertebrados, Universidad Nacional de La Plata (CONICET), La Plata B1900FWA, Argentina

A R T I C L E I N F O

Article history:
Received 5 December 2014
Received in revised form 6 May 2015
Accepted 27 May 2015
Available online 5 June 2015

Keywords:
Hypsodonty
Notoungulate
Atmospheric CO2
Stable isotopes
Precipitation
Dust

A B S T R A C T

New local/regional climatic data were compared with floral and faunal records from central Patagonia to investigate how faunas evolve in the context of local and global climates. Oxygen isotope compositions of mammal fossils between c. 43 and 21 Ma suggest a nearly constant mean annual temperature of 16 ± 3 °C, consistent with leaf physiognomic and sea surface studies that imply temperatures of 16–18 °C. Carbon isotopes in tooth enamel track atmospheric δ13C, but with a positive deviation at 27.2 Ma, and a strong negative deviation at 21 Ma. Combined with paleosol characteristics and reconstructed Leaf Area Indices (rLAI), these trends suggest aridification from 45 Ma (c. 1200 mm/yr) to 43 Ma (c. 450 mm/yr), quasi-constant MAP until at least 31 Ma, and an increase to ~800 mm/yr by 21 Ma. Comparable MAP through most of the sequence is consistent with relatively constant floral compositions, rLAI and leaf physiognomy. Abundance of palms reflects relatively dry-adapted lineages and greater drought tolerance under higher pCO2. Pedogenic carbonate isotopes imply low pCO2 = 430 ± 300 ppmv at the initiation of the Eocene–Oligocene climatic transition. Arid conditions in Patagonia during the late Eocene through Oligocene provided dust to the Southern Ocean, enhancing productivity of silicifiers, drawdown of atmospheric CO2, and prorogated global cooling. As the Antarctic Circumpolar Current formed and Earth cooled, wind speeds increased across Patagonia, providing more dust in a positive climate feedback. High tooth crowns (hypsodonty) and ever-growing teeth (hypselodonty) in notoungulates evolved slowly and progressively over 20 Ma after initiation of relatively dry environments through natural selection in response to dust ingestion. A Ratchet evolutionary model may explain protracted evolution of hypsodonty, in which small variations in climate or dust delivery in an otherwise static environment drive small morphological shifts that accumulate slowly over geologic time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Patagonian strata of South America encode a remarkable record of climate, ecology, and faunal evolution spanning much of the Cenozoic. Most spectacularly, South American notoungulates and other herbivorous lineages show a pattern of increasing cheek tooth crown height since the middle Eocene (~38 Ma), classically hypothesized to reflect an evolutionary response to linked climate and vegetation change during the Eocene–Miocene (e.g., Stebbins, 1981; Jacobs et al., 1999; Madden et al., 2010; Strömberg, 2011). Many studies have attempted to test this hypothesis by reconstructing vegetation structure and composition through paleobotanical evidence or indirect proxies (e.g., Croft, 2001; Palazzesi and Barreda, 2012; Strömberg et al., 2013; Dunn et al., 2015). However, most do not explicitly link vegetation and faunal data to regional and global climate reconstructions to investigate the interplay among global climate change, ocean circulation and local climates and ecologies. Penetrating deep into the southern reaches of Earth’s oceans, Patagonia provides an unusual opportunity to do just this. Because South America was effectively separated from other continents from ~50 Ma through the late Miocene to Pliocene (Lawver et al., 2015), its faunas evolved and radiated in relative isolation (Webb, 1978; Simpson, 1980). The resulting, relatively limited impact of immigration is advantageous, because it allows the role of other factors, such as climate change, to be more clearly evaluated.

A classic dichotomy in evolutionary theory distinguishes pressures derived from interactions among co-evolving species (so-called “Red Queen”-type hypotheses1; Van Valen, 1973; Bell, 1982) from pressures

http://dx.doi.org/10.1016/j.palaeo.2015.05.028
0031-0182/© 2015 Elsevier B.V. All rights reserved.
derived from changes to the environment (e.g. climate and tectonics; so-called “Court Jester”-type hypotheses; Barnosky, 2001). The Red Queen has recently been demoted as being of limited use to explain adaptation or extinction, based on both theoretical and empirical considerations (Vermeij and Roopnarine, 2013), and many deep-time studies in both North and South America point to climate as a major driver of evolution, in support of Court Jester hypotheses (Barnosky, 2001; Barnosky et al., 2003; Figueirido et al., 2012; Woodburne et al., 2014). In contrast, other comparative work fails to show any relation between environmental alteration and faunal change (Prothero, 1999, 2004; Alroy et al., 2000); thus the importance of the Court Jester for major evolutionary trends in faunas remains uncertain.

A major shortcoming of virtually all analyses performed so far is the inappropriate spatial scales of the climate data compared to the biotic records, with, for example, regional to continent-wide faunal information assessed against global climate data (e.g., Alroy et al., 2000; Figueirido et al., 2012). Considering the mounting evidence that the nature and timing of faunal and floral changes varied from region to region during the Cenozoic (e.g., Leopold and Denton, 1987; Strömberg, 2005, 2011; Edwards et al., 2010; Finarelli and Badgley, 2010; Woodburne, 2010), region-by-region analysis seems necessary to discern biologically meaningful patterns.

In this study, we sought to improve upon previous work by rigorously evaluating links between abiotic change and biotic responses in southern South America during the Cenozoic (~43 to ~20 Ma), and using the results to assess the strength of the Court Jester. To do so, we combined new stable isotope data with recent and emerging floral and faunal data from a single, confined region in Patagonia, and analyzed these records in the context of global climate change. Specifically, we address the following questions:

1) What was the environment like in central Patagonia in terms of physical climate variables and vegetation structure and composition? How did these change through time?
2) How did global climate change, as represented by the deep marine record, impact local climates? Did abrupt climate shifts, such as the Eocene–Oligocene transition, cause abrupt changes to ecosystems and faunas also in Patagonia? Is there any evidence for local conditions causing feedbacks to global climate?
3) Did climate change impact faunal evolution and if so, what was the timing and rate of that change in relation to climate? In particular, we wish to evaluate whether faunas rapidly (e.g., \(<1\) Ma) adapted tooth morphology to a particular climate and ecological condition, or whether they exhibit significantly delayed response suggesting an evolutionary lag or weak selection (Strömberg, 2006).

2. Background

2.1. Geology

In central Patagonia, a c. 300 meter-thick sequence of fine-grained tuffaceous sediments – the Sarmiento Formation – hosts numerous fossil localities spanning ~43 to ~19 Ma (Kay et al., 1999; G. Ré et al., 2010; G.H. Ré et al., 2010; Dunn et al., 2013). Gran Barranca is the most fossiliferous and famous of these localities and is exposed in southern Chubut Province, Argentina (Fig. 1). Collections from this exposure form the basis for nearly all our interpretations. The Sarmiento Formation overlies middle Eocene intensely pedogenically modified mudstones and tuffaceous sediments of the Koluel Kalle Formation, and is overlain by Miocene marine sediments of the Chenque Formation (Belloli, 2010).

Although barren of fossils, paleosols of the Koluel–Kaike Formation provide useful constraints on precipitation (Krause et al., 2010). The age of the Koluel–Kaike Formation is loosely bracketed between ~42 Ma (the oldest overlying age from Gran Barranca; G. Ré et al., 2010) and ~47 Ma (youngest detrital zircon ages from underlying sediments of the Las Flores Formation; see Supplemental file), and we assume an age of ~45 Ma.

Sarmiento Formation sediments consist dominantly of fine-grained, terrestrial, tuffaceous mudstone, siltsilt and fine-grained sandstone, variably reworked via fluvial, eolian and pedogenic processes (Spalletti and Mazzoni, 1979). Zircon trace element patterns are most consistent with an arc source (M. Kohn and J. Crowley, unpubl. data), presumably from the distal Andean arc rather than the more proximal intracontinental backarc. From lowest to highest, the Sarmiento Formation consists of six members: Gran Barranca, Rosado, Lower Puesto Almendra, Vera, Upper Puesto Almendra, and Colhue–Huapi (Fig. 2). The sequence at Gran Barranca spans six successive South American Land Mammal Ages (SALMAs; Madden et al., 2010; Fig. 2); from oldest to youngest these are the Barrancan, Mustersan, Tinguirirican, Deseadan, Colhuehuapian, and Pinturan. The La Cantera level also preserves a faunal assemblage intermediate between Tinguirirican and Deseadan SALMAs. Nearby exposures include (in stratigraphic order) the Itaboraian (Las Flores locality), Riochico (Koluel–Kaike Formation), and Vacan (Cañada Vacas) SALMAs (e.g., see Woodburne et al., 2014). We generally refer our data to SALMAs in the discussion.

Numerous relatively pristine tuffs occur at Gran Barranca, and basalt flows occur within the Upper Puesto Almendra member. Geochronology of these volcanic rocks combined with magnetostratigraphy defines a detailed chronostatigraphy (G. Ré et al., 2010; G.H. Ré et al., 2010; Dunn et al., 2013) spanning ~42 to ~19 Ma, with the most fossiliferous strata between ~40 and ~20 Ma. Despite its numerous geologic and paleontologic qualities, Gran Barranca does contain major depositional hiatuses (Belloli, 2010; G. Ré et al., 2010; G.H. Ré et al., 2010), so we
included fossils of different ages from two nearby localities. Fossils from basal Sarmiento Formation at Cañadon Vaca (Fig. 1) date to the Vacan SALMA (Cifelli, 1985; ~43 Ma; Fig. 2), and fossils from Scarritt Pocket (Fig. 1) are from the early Deseadan (27.2 Ma; Vucetich et al., 2014; Supplemental file; Fig. 2). These localities are sufficiently close to Gran Barranca that we do not expect significant differences in climate; for example, modern climatic conditions are indistinguishable.

2.2. Floras

Although plant macrofossils are spectacularly well preserved prior to the middle Eocene in southern South America (e.g. see Wilf et al., 2013), occurrences are temporally sporadic from the late Eocene through Miocene (Hinojosa and Villagrán, 2005). Instead phytoliths (microscopic silica particles formed inside living plants) provide a more continuous record for the post-middle Eocene (Strömberg et al., 2013; Fig. 2). These microfossils show that grasses were remarkably sparse between 43 and 18.5 Ma, especially during the latest Eocene to middle Oligocene, and instead palms, conifers, and “forest” indicators (collectively “dicots,” ferns, conifers, and gingers) dominate. Grass abundances were slightly higher in the mid/late Eocene (up to ~15% of phytolith assemblages) and increased in the early Miocene (up to ~25% of phytolith assemblages; Strömberg et al., 2013). These data conclusively rule out the occurrence of grasslands through the sequence analyzed. However, although phytolith and sparse pollen data were originally interpreted as indicating relatively closed, forested habitats (Palazzesi and Barreda, 2012; Strömberg et al., 2013), new research on phytolith micromorphology (Dunn et al., 2015) implies that Patagonian plant communities experienced high light levels characteristic of relatively open habitats. In the absence of abundant grasses, phytolith and pollen types alone do not necessarily indicate habitat openness, and habitats could have ranged from closed to relatively open.

2.3. Faunas

The Sarmiento Formation preserves a rich record of faunas and faunal evolution. Of special relevance to this study, between ~40 and ~20 Ma increases are observed in both mean tooth crown height (hypsodonty or the ratio of tooth crown height to anterior–posterior length, here determined on relatively unworn M1 molars) within clades
and the proportion of taxa among notoungulates with high-crowned (hypsodont) and ever-growing (hypselodont) teeth (Fig. 2; Strömberg et al., 2013; Dunn et al., 2015). In general, Patagonian faunas show increases in hypsodonty earlier than at other sites in South America (Strömberg et al., 2013), so we view these changes as occurring in situ rather than simply reflecting immigration of taxa that evolved elsewhere. Increases in hypsodonty (and many other characteristics such as cursoriality) parallel but significantly precede (by 15–20 Ma) similar changes observed in northern hemisphere ungulates (Webb, 1977, 1978; Jacobs et al., 1999).

Hypsodonty was originally viewed as an adaptation to grazing in grassland ecosystems (e.g., Kovalevsky, 1874; Scott, 1937; Stebbins, 1981; see review of Damuth and Janis, 2011). Most researchers today, however, identify the main selective agent for hypsodonty as the incidental ingestion of abrasive soil or grit resulting from feeding close to the ground in generally open habitats, not necessarily grasslands (Williams and Kay, 2001; Sanson et al., 2007; Damuth and Janis, 2011; Kaiser et al., 2013; Madden, 2014). Thus, hypsodonty could certainly evolve in the context of grasslands (e.g., Strömberg, 2006; Strömberg et al., 2007), but could alternatively evolve in any dusty or gritty environment. Phytolith analysis at Gran Barranca and Cañadón Vaca supports this view by demonstrating that evolution of hypsodonty among notoungulates in Patagonia occurred in vegetation types lacking major grass biomass (Fig. 2; Strömberg et al., 2013).

2.4 Climate

The long interval represented by strata in central Patagonia spans significant climate change (e.g., Zachos et al., 2001), notably gradual cooling from the mid-Eocene Climatic Optimum (MEOC; ~42 Ma) to the late Eocene, abrupt cooling across the Eocene–Oligocene transition (EOT; 33.5–34 Ma) and possible late Oligocene warming (LOW; 25–26 Ma). The EOT is widely viewed as a global response to the tectonic isolation of Antarctica and development of the Antarctic Circumpolar Current (Kennett, 1977). The origins and global significance of LOW are debatable as studies proximal to Antarctica show nearly constant bottom water temperatures and evidence for full glaciation (Pekar et al., 2006). LOW may simply reflect a decrease in the export of cold Antarctic bottom waters to the Atlantic and Pacific, allowing their deep waters to warm, rather than a global increase in temperature (Pekar et al., 2006).

The effects of these events on Patagonian climate are not well known. Sparse Patagonian megafossil provide constraints for the middle Eocene to early Miocene of southern South America (Hinojosa and Villagrán, 2005), but few have good age control, obscuring an exact climatic pattern for the period of interest. Leaf physiognomy-based estimates suggest a relatively stable MAT of 17 ± 3 °C from the late middle Eocene (37–45 Ma) to earliest Miocene (~21 Ma) with substantially higher temperatures (23–25 °C) for the middle Miocene (10–19 Ma; adjusted values from Hinojosa, 2005, using MAT correction in Hinojosa et al., 2011, and age correction in Dunn et al., 2015). The same sparse record suggests that MAP dropped during the middle Cenozoic, from >2000 mm in the middle Eocene to ~1000 mm by the latest Oligocene, but the exact timing of this decrease is unclear and errors are large (c. +65%–40%; Hinojosa, 2005; Hinojosa and Villagrán, 2005; Hinojosa et al., 2006). Pollen data are consistent with relatively warm, humid climates until the late Oligocene (Barreda and Palazzes, 2007; Quattrocchio et al., 2013). Paleosol character for the late Eocene Koluel–Kaike Formation near Gran Barranca similarly points to aridification, but much earlier during the middle Eocene, resulting in a MAP of 600–700 mm/yr by ~44 Ma (Krause et al., 2010). Estimates of MAP at Gran Barranca have been based on paleosol character in the context of assumed floras, and range between 300 and 1100 mm/yr (Belloli and González, 2010).

2.5 Previous stable isotope work

Previous stable isotope work for this time interval in central Patagonia primarily consists of oxygen isotopes in fossil teeth (Kohn et al., 2004, 2010). These data suggest only small changes in δ18O through the section, interpreted to reflect only small changes in temperature (Kohn et al., 2004, 2010), consistent with paleobotanical data (Strömberg et al., 2013; Dunn et al., 2015; see discussion below). The present study significantly expands the isotope dataset, lending confidence to δ18O trends. More importantly, we have also measured δ13C values of coexisting fossil bone, and δ18O of δ13C of pedogenic carbonate, from which MAP, pCO2, and temperature changes can be estimated (Cerling, 1991, 1999; Zanazzi et al., 2007; Kohn, 2010). These new observations in turn permit intercomparisons among faunal evolution, local climate, local environment, and global climate.

3. Methods

3.1 Sampling

Previously analyzed fossil teeth (Kohn et al., 2004, 2010) were precisely located relative to distinctive tuffs. The teeth are all identifiable to family, commonly to genus, and occasionally to species. We collected new fossil tooth enamel and bone specimens at Cañadón...
Vaca and Gran Barranca mostly from float, prospecting along ridge axes rather than ridge bases or flat areas to minimize downward drift and time-averaging of fossils. A similar approach (Zanazzi et al., 2009) proved successful in delineating abrupt isotope shifts elsewhere (Zanazzi et al., 2007; Zanazzi and Kohn, 2008). We also collected pedogenic carbonate nodules through a subsection of the lower Vera member near the Eocene–Oligocene boundary. All specimens were located to the nearest 0.1–0.25 m using a Jacobs staff relative to distinctive tuffs, which were located within the overall chronostatigraphic framework of Dunn et al. (2013). Note that because of slight variations in thickness along different transects, our meter levels do not always line up precisely with Dunn et al.’s, but key chronologic horizons are identical. Ultimately we average many of our data into time slices, so these minor differences are unimportant.

Tooth enamel fragments were also collected from Cahadon Vaca from a fossiliferous tuff, geographically isolated from the stratigraphically coherent section. Attempts to separate and date zircons from the tuff were unsuccessful, so we simply assign an average age of ~43 Ma to all specimens; this age is intermediate between the VRS tuff at Gran Barranca (41.7 Ma; G. Ré et al., 2010), which stratigraphically overlies the Vacañ, and the assumed age of the Koluel–Kaike Formation (~45 Ma). Teeth from Scarratt Pocket were obtained from past collections housed at the Museo de de la Plata. Fossils and tuff were collected from a single horizon, so we assign a single age of 27.2 ± 0.5 Ma (Vucetich et al., 2014).

Few of the new enamel fragments could be identified to genus or species, but microstructural characteristics combined with previous studies of faunas help delineate likely families. For example, thick enamel (≥2 mm thickness) with tiny transverse ridges on occlusal surfaces is characteristic of astrapotheres, whereas the occurrence of perikymata (transverse ridges on outer tooth surfaces) is restricted to toxodontids, and enamel from large brachydont to mesodont teeth is probably characteristic of astrapotheres, whereas the occurrence of perikymata (transverse ridges on outer tooth surfaces) is restricted to toxodontids, and enamel from large brachydont to mesodont teeth is probably derived from leontiniids or isognathids (two extremely common families). These distinctions facilitate comparison of isotope compositions among different families.

For each tooth enamel fragment, we subsampled a thin sliver along its growth axis, favoring longer fragments where possible, and powdered the entire sliver for isotope compositions. This approach averages isotope zoning, but previous studies have explored zoning for many levels (Kohn et al., 2004, 2010), and variation among numerous different specimens provides an alternate measure of isotope variability for a particular time slice. For comparison equivalency, we average isotope compositions of each serially-sampled tooth from previous studies to a single composition. Isotope composition of bones are commonly quite scattered (e.g. Zanazzi et al., 2007, 2009), so for each level we powdered small fragments of individual bones, pretreated separately, then mixed equal amounts (1 mg) into a composite for analysis. Strictly speaking, bone compositions must post-date enamel from large brachydont to mesodont teeth is probably derived from leontiniids or isognathids (two extremely common families). These distinctions facilitate comparison of isotope compositions among different families.

Pedogenic carbonate nodules were prepared and analyzed for stable carbon and oxygen isotopes at the Boise State Stable Isotope Laboratory. Nodules were collected with an ~0.2 m spacing from ~33 to ~44 m above the base of the Vera (34.2 to 33.8 Ma), with a gap between ~35 and ~38 m (34.1 to 34.0 Ma; Fig. 3). These levels underline the precisely dated, fossiliferous La Cancha level (c. 50 m above the member base; 33.58 Ma; Dunn et al., 2013), and fall within the earliest stage of the EOT immediately prior to the main OH1 phase (Fig. 3). Carbonate nodules were not found elsewhere along our transect and are randomly distributed, which we interpret to reflect continuous aggradation of superposed Bk horizons (Bk refers to the level of carbonate accumulation in a soil; Soil Survey Staff, 2010). Texturally analogous nodules from the Vera are illustrated in (Bellosi and González, 2010; their Fig. 20.2-9; see Supplemental file).

3.2. Isotope analysis

Fossil tooth, bone, and reference NIST120c powders were identically pretreated using the method of Koch et al. (1997) and analyzed for δ13C and δ18O values of structural carbonate (Table 1) using an automated extraction system (Gasbench II) attached to a ThermoFisher Delta V-Plus mass spectrometer housed in the Stable Isotope Laboratory, Department of Geosciences, Boise State University. Pedogenic carbonate nodules consist solely of micritic calcite (no sparry calcite was found), so a small portion was powdered and analyzed using the same analytical raw data. All specimens were standardized against NIST18 and NIST19 carbonates, whose analytical reproducibilities for both C- and O-isotopes were ±0.2–0.3‰ (±2σ). Biogenic phosphate δ18O values exhibit small but systematic session-to-session variations in absolute values. Consequently, we made further small corrections based on concurrent analysis of NIST120c (a phosphorite with broadly similar bioapatite chemistry as fossil teeth and bones), assuming a composition of 28.50‰ (V-SMOW) based on an ~10 year average of analyses collected in our laboratory. Average values for NIST120c δ18O range from 28.2 to 28.8‰ (V-SMOW). Carbon isotope values require no additional correction and for NIST120c average δ18O = −6.55‰ (V-PDB). Reproducibility on NIST120c was approximately ±0.25‰ for δ13C and ±0.6‰ for δ18O (2σ).

3.3. Temperature calculations from fossil bones and teeth

The fractionation of oxygen isotopes between fossil bone and enamel can potentially elucidate changes in air (soil) temperature (Zanazzi et al., 2007) because bone is diagenetically altered at ambient soil temperatures (Kohn and Law, 2006) whereas enamel retains its original chemistry as fossil teeth and bones), assuming a composition of 3.13Catm and 3.25Catm of atmospheric CO2, but also correlate negatively with MAP as determined from 3.4. MAP calculations

Carbon isotope values of C3 plants and their consumers track the δ13C of atmospheric CO2, but also correlate negatively with MAP (e.g., Stewart et al., 1995). These dependencies were calibrated using modern data to permit calculation of MAP (Kohn, 2010):

$$\text{MAP} = 10 \left[\frac{\delta^{13}C_{\text{car}} - \delta^{13}C_{\text{leaf}}}{\delta^{13}C_{\text{car}} - \delta^{13}C_{\text{leaves}}} \right] - 300 \quad (2)$$

where \(\delta^{13}C_{\text{car}}\) and \(\delta^{13}C_{\text{leaf}}\) are the carbon isotope compositions of atmospheric CO2 and vegetation, respectively, as determined from proxies. The benthic foraminiferal record provides a proxy for \(\delta^{13}C_{\text{car}}\)
(Tipple et al., 2010). Although we have no direct measure of plant compositions, tooth enamel in modern perissodactyls (horses, rhinos, and tapirs) exhibits a constant, ~14‰ offset relative to diet (Cerling and Harris, 1999). Perissodactyls are hindgut fermenters, retaining the isotope compositions in permil relative to V-SMOW (the relatively dry Pleistocene (Kohn, 2014). Similarly, many tree ring radiocarbon studies covering the last century do not independently resolve a pCO₂ effect on isotope discrimination (e.g., Saurer et al., 2004). Other estimates of MAP in South America were taken from studies of leaf physiology for sites 300–700 km NW of the study area (Fig. 1; Hinojosa, 2005; Hinojosa and Villagrán, 2005; Hinojosa et al., 2011) and from paleosols of the Kolue–Kaike Formation (Krause et al., 2010) and the Sarmiento Formation at Gran Barranca (Belloso and González, 2010). The latter estimates, however, may be biased by local sediment accumulation rates (see further discussion below).

3.5. pCO₂ Calculations

The δ13C of pedogenic carbonate can be used to estimate pCO₂ provided the following compositional and concentration parameters are constrained (Cerling, 1991, 1999): the concentration of soil CO₂ [S(z)] and values for $\delta^{13}C_{a}$, $\delta^{13}C_{s}$, and $\delta^{13}C_{e}$, where subscripts a, s, and e refer to soil CO₂, respired CO₂ (commonly taken as soil organic carbon δ13C), and air CO₂:

$$pCO_2 = S(z) \left[\frac{\delta^{13}C_a - 10044 \, \delta^{13}C_b - 4.4}{\delta^{13}C_a - \delta^{13}C_b} \right].$$ \hspace{1cm} (4)

We estimated $\delta^{13}C_a$ (soil CO₂) from measured modern pedogenic calcite as corrected for formation temperature according to experimental calibrations (Romanek et al., 1992):

$$1000 \left[\frac{\delta^{13}C_{CO_2} + 1000}{\delta^{13}C_{CO_2} + 1000} \right]^{-1} = 11.98 - 0.12 \cdot T(°C).$$ \hspace{1cm} (5)

Because organic carbon contents of these sediments are extremely low, our preferred value for $\delta^{13}C_b$ is based on mean δ13C values of tooth enamel carbonate (~10.5 ± 0.5‰; Kohn et al., 2010, this study), corrected downward by 14‰ for leaf-enzyme fractionation (Cerling and Harris, 1999) and corrected upward by 2 ± 1‰ for the difference between bulk leaf vs. soil organic matter in modern soils (Bowling et al., 2008). The value for $\delta^{13}C_a$ is again based on benthic foraminiferal records (Tipple et al., 2010). For S(z), recent work suggests a typical value during pedogenic carbonate precipitation of 2500 ± 1000 ppm (Breecker et al., 2010). A regression of S(z) vs. MAP (Cotton et al., 2011) is used to extract $\delta^{13}C_a$ from S(z) and values for $\delta^{13}C_{s}$, $\delta^{13}C_{e}$, and $\delta^{13}C_{a}$ for the Holocene. The latter estimates, however, may be biased by local sediment accumulation rates (see further discussion below).
variations, but also because of year-to-year variations in climate. Scatter in δ18O shows no significant differences at 95% confidence (F-tests, applying Bonferroni correction) except for δ18O of Barrancan vs. late Deseadan and Colhuehuapian times (Supplemental file). However, omitting two anomalous compositions from the Barrancan data eliminates these differences, and bone compositional scatter is indistinguishable for the Barrancan and Colhuehuapian. Overall we infer comparable scatter at different times. Differences in variance among identifiable taxa for specific time slices are also not significant (Supplemental file).

We found no significant differences in mean δ13C or δ18O values among different sympatric families (data in Supplemental file), so discuss isotope compositions as averaged across taxa. Average enamel δ13C generally tracks δ13C of atmospheric CO2 for the earlier half of the record (Fig. 4C), but is slightly higher in the early Deseadan and deviates to lower δ13C values for the later Deseadan and Colhuehuapian. Average bone δ18O values scatter widely. Average enamel δ18O values show no significant differences among levels except for the late Deseadan, which is significantly lower (Fig. 4D). Excepting Vacan specimens, bone δ18O values do not differ significantly from enamel values.
5. Discussion

5.1. Oxygen isotopes and Patagonian paleoclimate

Our expanded dataset corroborates previous studies (Kohn et al., 2004, 2010) that showed no significant change to δ18O values through the section, except during Deseadan time. Note that Kohn et al. (2010) assumed an age for the Deseadan fossils at Gran Barranca of ~27 Ma, but the fossils occur along a disconformity whose age is bracketed between 26.3 ± 0.3 and ±23.1 Ma (R et al., 2010a; Dunn et al., 2013). Regardless, these fossils postdate Deseadan faunas at Scarratt Pocket (27.2 Ma; Vucetich et al., 2014). The climatic implications of constant δ18O values must be considered in the context of changes to global ocean δ18O attending changes in ice volume. Specifically, growth of the Antarctic ice sheet during the EOT should have raised ocean and precipitation δ18O values by ~1‰ (Coxall et al., 2005). One possible reason this increase is not observed is that decreasing temperature normally decreases precipitation δ18O values, with a coefficient of −0.35‰/°C at mid- to high latitudes (see Kohn et al., 2002). Correlations between biogenic phosphate and local water δ18O (e.g. Kohn, 1996; Kohn and Cerling, 2002) imply an ~0.3% decrease in enamel δ18O per degree of cooling. Thus, constant δ18O values across the EOT in the context of a 1% rise in the global meteoric system could indicate a temperature decrease of c. 3–4 °C (1% = 0.3‰/°C; Kohn et al., 2010). Alternatively, small changes to moisture sources at constant temperature could have offset the global increase in water δ18O. For example, changes in the position and intensity of the westerlies have been documented during the Quaternary, affecting plant communities and hydrology (e.g., Moreno et al., 2012). Similar changes might have influenced isotope compositions to offset the global shift independent of temperature. Constant δ18O values subsequent to the EOT are consistent with quasi-constant temperatures and ice volume through the Oligocene and (arguably) the early Miocene, supporting previous suggestions that late Oligocene warming was not manifest at high southern latitudes (Pekar et al., 2006). Even if late Oligocene warming was a global phenomenon, high ice volume in Antarctica (i.e. quasi-constant global ocean compositions; Pekar et al., 2006) may indicate that temperature did not change significantly in central Patagonia. A constant temperature is consistent with indistinguishable MAT estimates for late Eocene through early Miocene floras in southern South America (Hinojosa and Villagrán, 2005; Hinojosa et al., 2006, 2011; see discussion below).

The −1.1% dip in δ18O values for late Deseadan fossils at Gran Barranca might reflect deep glaciation associated with Mi1 at 23 Ma (Miller et al., 1991). Because the disconformity from which the fossils derive spans at least 3 Ma, we cannot definitively pin the isotopes to this event. But possibly abrupt cooling catalyzed erosion of underlying sediments and accumulation of teeth. If so, the isotope shift would be consistent with brief cooling of at least 4 °C (1.1% = 0.3‰/°C).

Application of Eq. (1) (above) to bone and enamel compositions through the sequence (Fig. 4) implies relatively constant alteration temperatures of 16 ± 3 (2 s.e.) °C. Unfortunately we lack bone from the EOT to independently test interpretations of temperature changes derived from oxygen isotope trends alone. Calculated temperatures are lower than body temperature because, although isotope compositions are comparable for bone and enamel, body water δ18O for large, water-dependent herbivores is typically at least 5% higher than local water (e.g. Kohn and Cerling, 2002). That is, enamel and bone δ18O values may be similar, but the water δ18O values with which the bioapatite equilibrated differed considerably. We assume that bone does not preserve original biogenic compositions because its δ13C values are substantially different from enamel in many levels. The calculated alteration temperature is higher than modern day MAT (11.0 °C for Sarmiento, Argentina), and overlaps temperatures estimated from marine and floral data of the mid-Cenozoic. Models of ocean circulation anchored to measurements of temperature from bivalve shells spanning 34 to 45 Ma imply essentially constant MAT = 15–17 °C for coastal South America at the latitude of Gran Barranca (Douglas et al., 2014). Insofar as temperature in Patagonia is strongly buffered by proximity to the ocean, Douglas et al.’s observations and our new isotope data imply that temperatures in the region decreased relatively little between the Eocene and early Miocene. Floral analysis similarly implies statistically indistinguishable MAT values of 17 ± 3 °C from the Eocene through early Miocene (Hinojosa and Villagrán, 2005; Hinojosa et al., 2006), although later calculations using leaf physonomy methods calibrated to South American floras produce MAT values that are ~1.5 °C lower (Hinojosa et al., 2011). A value for MAT of 14–18 °C fits observations for all data except the late Deseadan.

Variation in δ18O is commonly taken to reflect changes in local water δ18O, which in turn responds to temperature. For example, δ18O zoning in teeth closely tracks seasonal meteoric water composition, which correlates with seasonal temperature (e.g., Frick and O’Neill, 1996; Kohn, 1996). In general, our sampling protocol did not resolve sufficient fine-scale detail to warrant close comparisons among levels. However, the ±2% range divided by the temperature coefficient for seasonal isotope variations in large herbivores at mid-latitudes (0.3‰/°C; Zanazzi et al., 2007) implies a minimum estimate of the mean annual range of temperature (MART) of ~13 °C, identical to estimates of MART derived from Eocene through early Miocene floras of southern South America (13–14 °C; Hinojosa and Villagrán, 2005). In combination with a MAT of 16 °C, this range implies a warm-month mean temperature (WMMT) of 23 °C. The range of variation does not appear to differ significantly among levels, implying similar MART through the sequence.

The δ18O of pedogenic calcite can also be used to infer temperature, if the δ18O of soil water is known independently. This temperature is expected to reflect WMMT because pedogenic carbonate forms preferentially during the dry (usually warmest) season (Brecker et al., 2009). Tooth enamel δ18O correlates closely with local water δ18O (e.g. see review of Kohn and Cerling, 2002), so we used δ18O values for tooth enamel from the Vera Member (Kohn et al., 2010; this study) and global correlations for water-dependent ungulates (Kohn and Cerling, 2002; Kohn and Dettman, 2007; Kohn and Fremd, 2007) to derive local water δ18O. Because we infer a plesiomorphic hindgut digestive physiology for meridiungulates (see above) we reasonably assume that they were water dependent like all perissodactyls today (McNab, 2002). These data imply a local water composition of −8.5 ± 1.0‰ (V-SMOW), with the largest uncertainty resulting from scatter in modern correlations. Together with a mean pedogenic calcite value of 21.3 ± 0.2‰ (V-SMOW, 2 s.e.), the experimental calibration of Kim and O’Neill (1997) implies a precipitation temperature of 18 ± 6 °C. This temperature overlaps with but is slightly lower than WMMT independently estimated above from MAT, MART, and sea-surface temperature (~23 °C). Increasing assumed soil water δ18O by 1‰ (e.g., reflecting modern calibration errors or soil water evaporation) would increase calculated WMMT by 5 °C and reconcile all temperature calculations.

5.2. Pedogenic carbonate and pCO2

For calculating pCO2, we estimated δ13C (−16.5‰) from pedogenic carbonate δ13C (−7.3 ± 0.1‰) assuming carbonate formed at a WMMT temperature of 23 °C. Other parameters include δ13C3 = −6.0‰ (Tipple et al., 2010) and δ13Cp, = −22.5 ± 1‰ based on mean δ13C values of tooth enamel carbonate (−10.5 ± 0.5‰; Kohn et al., 2010; this study) and offsets between bulk leaves and soil organic matter (Bowling et al., 2008). Taken together, these values imply pCO2 = 430 ± 250 ppmv, indistinguishable from estimates from mid-Oligocene paleosols in India (433 and 633 ppmv, uncertainties not reported; Srivastava et al., 2013). Including a temperature error of ±5 °C increases total propagated uncertainties to ±300 ppmv (higher WMMT implies higher pCO2). Such a low pCO2 (<750 ppmv) contrasts with marine proxies that typically imply values of 800–1000 ppmv.
immediately preceding the EOT (Pearson et al., 2009; Zhang et al., 2013). A drop in \(P_{\text{CO}_2} \) just before Oi-1, however, as implied by our data, is a logical driver of global cooling during the EOT (DeConto and Pollard, 2003).

5.3. Carbon isotopes and MAP

Specific MAP estimates from carbon isotopes (Fig. 5A) show no resolvable changes from 43 to 30 Ma, even across the EOT. A mean calculated value of \(-450\) mm/yr (±200 mm) implies semi-arid conditions. Systematic errors would shift all data uniformly, so the constancy of these estimates, which reflects the constant offset between tooth enamel and atmospheric \(\delta^{13}C \) (Fig. 4C), is robust. Note that slightly higher apparent MAP values during the Barrancan (c. 600 mm/yr) are controlled by lower \(\delta^{13}C \) values during an ~200 ka interval (ellipse in Fig. 4A); omitting these data lowers Barrancan MAP to ~400 mm/yr, indistinguishable from the Vacan and Mustersan. During the early Deseadan (27.2 Ma), MAP appears to drop. However, we have relatively few fossils from this locality (Fig. 2B), so although their compositions are internally consistent, we are cautious in interpreting this time slice. They certainly do not indicate wetter conditions. MAP at ~23 and ~21 Ma shows a distinct rise. Paleofloral estimates of MAP in southern South America (Hinojosa, 2005; Hinojosa and Villagrán, 2005) are generally higher (average c. 1000 mm/yr), but uncertainties are large (standard errors on the order of 450–1000 mm), and minimum estimates overlap our calculations. A systematic calibration error of 200–250 mm/yr for isotope-derived MAP, which is within calibration uncertainties, would also help reconcile these datasets.

Paleosol estimates of MAP based on soil type and chemistry show generally high MAP (up to 1300 mm/yr) in the Koluel–Kaike Formation, and a drop towards low MAP values similar to ours at 43 Ma (Krause et al., 2010). Lateritic soils, characteristic of the lower Koluel–Kaike Formation, form only at high MAP (≥1200 mm/yr; e.g. Retallack, 2008), strongly suggesting aridification from the (lower) Koluel–Kaike to the Vacan. In the Sarmiento Formation at Gran Barranca, estimates of MAP from paleosols (or the inferred vegetation associated with them; Bellosi and González, 2010) and carbon isotope measurements overlap, but suggest that the Barrancan may have been slightly wetter than times immediately before or after. Younger paleosols also suggest an increase in MAP after ~25 Ma. The higher MAP estimates from Bellosi and González (2010) for the Barrancan, late Deseadan and Colhuehuapian, however, correlate with more mature soils and lower sediment accumulation rates (by a factor of 2; Dunn et al., 2013). Paleosol-based MAP estimates may be systematically biased by different durations of paleosol development (Zanazzi et al., 2009). Although sedimentation rate might follow MAP (e.g., perhaps sediments accumulate faster during drier times because delivery rates increase), any factor that affects sedimentation rate could potentially maskerade as changes to MAP (e.g. perhaps sediments accumulate faster when ash production is higher). In that respect, indistinguishable floristics in the late Barrancan and Mustersan (Fig. 3; Strömberg et al., 2013) may be more consistent with constant MAP than the decrease suggested by paleosols. Although early aridification and late wetting trends appear robust, the small variations between these trends may be less reliable. Overall, we view the data as more consistent with relatively constant MAP between 43 and at least 31 Ma, possibly as late as 25 Ma.

5.4. The paleoclimatic significance of high MAP floral indicators

The semi-arid conditions inferred from our record might at first appear at odds with MAP calculations and ecosystem reconstructions from leaf physiognomy and palynofloral and phytolith assemblages.

![Fig. 5](image-url) (A) Estimate of mean annual precipitation (MAP) from tooth enamel \(\delta^{13}C \) values (this study), paleosols (red, yellow symbols; Krause et al., 2010; Bellosi and González, 2010) and macroflorans (green bars; Hinojosa, 2005; Hinojosa and Villagrán, 2005; ages corrected in Dunn et al., 2015), implying aridification between ~48 and ~43 Ma, dry conditions until 25 Ma (possibly wetter at ~39 Ma), and an increase in MAP towards 20 Ma. Light symbol for Barrancan shows the effect of omitting a low \(\delta^{13}C \) cluster in a specific horizon (ellipse, Fig. 4A). K=Kaike. (B) Notoungulate hypsodonty record for central Patagonia showing the gradual changes through time. Green dots show percent hypsodont plus hypselodont taxa; blue dots show hypselodont percentages only. Error bars are bootstrapped 95% confidence limits. (C) Leaf area index from Dunn et al. (2015) with approximate boundaries of major ecosystems, corroborating relatively dry (open) conditions from the late Barrancan and Mustersan (late Eocene) through middle Colhuehuapian (early Miocene). Red line is a 5-point running average; error bars are 95% confidence intervals. Dashed lines temporarily correlate MAP estimates with hypsodonty and leaf area index records. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
from southern South America. The high abundance of palms prior to the early Miocene and the occurrence of gingers in the middle Eocene, as well as the generally ‘mixed’ composition of the floras have commonly been assumed to reflect high MAP, c. 1000 mm/yr or more (Hinojosa, 2005; Hinojosa and Villagrán, 2005; Hinojosa et al., 2006; Barreda and Palazesi, 2007; Quattrocchio et al., 2013; Strömberg et al., 2013). Several factors qualify inferences from floras, however. First, MAP estimates from leaf physiology carry large uncertainties – 40 to 65% – and the minimum bounds on MAP overlap our isotope-based estimates after accounting for age uncertainties (Fig. 5; Dunn et al., 2015). Second, the leaf physiology database has traditionally been heavily skewed towards northern hemisphere floras. Estimates of MAT show hemispheric bias, so temperature estimates now use hemisphere-specific calibrations (e.g. Hinojosa et al., 2011; Pepe et al., 2011; Kennedy et al., 2014). Similar hemispheric bias might occur for MAP, but is not yet studied. Third, although confined primarily to tropical rainforests today (e.g. Couvreur and Baker, 2013), palms contain wider ecological tolerance than is commonly recognized. Specifically, many members of the South American clade Attaleinae, which is represented by Paleocene fossils nearby (Futey et al., 2012), are relatively tolerant of water stress and disturbance. Thus, the commonly assumed correspondence between palms and high MAP may collapse in this region of South America – quantitative MAP estimates overlap semiarid conditions, and the palms that were present may have been relatively resistant to water stress. These observations do not explain gingers, but perhaps they were restricted to local wet depressions, which can occur in a variety of settings.

A final consideration is that plants close their stomata under higher pCO2, which dramatically improves water use efficiency (Ehleringer and Cerling, 1995; Ainsworth and Rogers, 2007; Ibrahim et al., 2010). For example, steadily increasing pCO2 has measurably improved water use efficiency across Eurasia during the last century (but without changing isotopic discrimination: Saurer et al., 2004). This effect has two implications in the context of higher pCO2 during the Eocene and possibly later periods. First, plants such as palms that are now considered to be restricted to relative wet ecosystems could have thrived under drier conditions as we propose here (Dunn et al., 2015). Second, because plants contribute significantly to atmospheric water vapor, improved water use efficiency would have diminished water vapor worldwide, slowing the water cycle and decreasing MAP. Overall, we appreciate the apparent disparity between our isotope-based estimates of MAP vs. taxonomic floral observations, but suggest that our estimates in the face of other factors are quantitatively correct and, in fact, hint at non-analog ecosystems in Earth’s past.

5.5. Did Patagonian dust drive Eocene cooling and the Eocene–Oligocene Transition?

The EOT is generally understood to reflect marine and atmospheric circulation responses to the opening of marine gateways between Antarctica and both South America and Australia (Kennett, 1977), and is associated with an increase in southern ocean productivity, an increase in terrestrial sediment delivery to the southern ocean, and a decrease in pCO2 (e.g., see Salamy and Zachos, 1999; Coxall and Wilson, 2011; Zhang et al., 2013). Here we propose that these environmental changes were all linked through Patagonian dust production as a result of the semi-arid climate reconstructed from isotopes and other lines of evidence (see above).

Some of the highest sustained winds on Earth blow across Patagonia between 40 and 50° S latitude – the so-called “Roaring 40s” – which together with unusually extensive exposures of highly erodable volcanic dust deposits help explain why Patagonia is the largest source of dust to the southern oceans during the Quaternary (Wolff et al., 2006; Li et al., 2008). We suggest that the output of dust from Patagonia has been substantial during at least the last 35 Ma. Progressive isolation of Antarctica and development of the Antarctic Circumpolar Current during the Eocene and early Oligocene likely increased wind speeds across Patagonia (Ladant et al., 2014). If Patagonia was already relatively dry by the end of the Eocene (Mustersan, Fig. 5; Dunn et al., 2015), increased delivery of dust-sourced Fe, Si and P to southern oceans from this already dry and highly erodable environment (sparsely vegetated, tephric soils) would have promoted higher productivity, particularly of silicifers (Diester-Haass and Zahn, 1996; Salamy and Zachos, 1999; Coxall et al., 2005) and decreased CO2, much as increased dust delivery during the Pleistocene served as a positive feedback in reducing CO2 and intensifying glaciations (e.g., Martin, 1990; Martinez-Garcia et al., 2011). The drawdown in CO2 from the late Eocene to Oligocene (Zhang et al., 2013) served as a positive feedback to drive Antarctic glaciation and thermal isolation, ultimately transforming Earth from greenhouse to icehouse conditions. One notable feature of Eocene–Oligocene climate is the long decline in global temperature between 42 and 34 Ma (i.e. between the MECO and EOT; Zachos et al., 2001; Fig. 2) and in pCO2 between 42 and ~25 Ma (Zhang et al., 2013). If aridification of Patagonia played a key role in this process, then global climate responded slowly overall, albeit with a marked step at the EOT. Further studies of mid-Cenozoic dust accumulation in South Atlantic marine cores would help test this hypothesis.

5.6. Faunal evolution: is the Court Jester a viable hypothesis?

Although Patagonian notoungulates crossed a hypsodonty index threshold of 1.0 relatively early (Strömberg et al., 2013), the overall record of increasing proportions of hypsodont and hypselodont taxa appears remarkably gradual (Figs. 2B, 5B). Indeed, if hypsodonty was an adaptation to dry, dusty environments, then it is striking that, although notoungulate hypsodonty did begin increasing soon after the initiation of semi-arid conditions by the late Eocene, the proportion of hypsodont + hypselodont taxa did not approach 100% for at least another 7 Ma, arguably until 20 Ma. Similarly, hypselodont taxa show a slow increase and do not constitute a majority in faunas even after ~20 Ma. The correspondence of reduced MAP, reduced vegetation cover, and increased hypsodonty does make sense — researchers have long recognized that lower MAP correlates with lower plant biomass, increased erosion, and increased sediment concentration in streams (Langbein and Schumm, 1958). Indeed modern day Patagonia is remarkable for its high wind speed and anomalously high rates of dust remobilization and deposition (Paruelo et al., 1998; Zender et al., 2003). Yet, the seemingly gradual increases in hypsodont + hypselodont taxa in the context of relatively constant climate and vegetation composition and structure appear inconsistent with the idea of a constant, directional environmental driver (Court Jester), Xenarthrans (especially sloths and armadillos) and rodents show changes in diversity and tooth morphology over the same time frame in the mid-Cenozoic that similarly cannot be explained by long-term changes in environment (Madden et al., 2010).

Despite this apparent lack of correlation between climatic and faunal patterns, we argue that it cannot be explained by the Red Queen hypothesis. The Red Queen is most relevant for asymmetric co-evolutionary relationships, such as that between predator and prey or parasite and host (Dawkins and Krebs, 1979; Vermeij and Roopnarine, 2013). Plants as herbivore “prey” are not directly responsible for the abrasiveness that is thought to have been the trigger for hypsodonty evolution in notoungulates (although it cannot be ruled out that plants evolved ways to capture more dust) (Strömberg et al., 2013; Dunn et al., 2015); furthermore, competition for limited plant resources among notoungulates is more likely to have led to intraspecific rather than interspecific competition (Dawkins and Krebs, 1979); in contrast, interaction among competing species is more likely to lead to niche divergence (“character displacement”; e.g., Brown and Wilson, 1956; Pritchard and Schluter, 2001).

If the physical environment drives faunal evolution (Court Jester), yet relatively dry ecosystems were already established by the late Eocene (Dunn et al., 2015; Fig. 5), why would hypsodonty evolve over
tens of millions of years? The answer might be that the observed long-term changes in hypsodonty are the cumulative effect of many short-lived instances of directional natural selection. Research has shown that trait selection occurs on scales of tens to thousands of generations, which translates to hundreds to tens of thousands of years (e.g., Barrick and Lenski, 2013), not millions of years; thus, one possible modification to the Court Jester hypothesis invokes small-scale climatic events or other perturbations that occur on time-scales shorter than we can normally sample within otherwise stable conditions. Such a mechanism has been dubbed the “Ratchet” (West-Eberhard, 2003; Lister, 2004; Fig. 6). For example, climate oscillations on time-scales of ~20, ~40, ~100 and ~400 ka, which are all too short for us to resolve fully with our current data, may have induced brief periods of enhanced aridity (dustiness) that in turn induced selection events that led to slight increases in hypsodonty (Fig. 6) – in keeping with the notion that short term, externally triggered instances of directional selection dominate in adaptive evolution (Vermeij and Roopnarine, 2013). For example, the anomalously low δ13C cluster in the Barrancan might represent the opposite — a brief (c. 200 ka) interval of enhanced precipitation. Similarly, an ~200 ka interval of reduced fire intensity and increased palm abundance has been inferred in the Vera member immediately after the EOT (Selkin et al., 2015). Such oscillations may be generally responsible for the variability observed in the records of phytolith assemblage composition and reconstructed Leaf Area Index (Strömberg et al., 2013; Dunn et al., 2015; Figs. 3, 5). Over many million years, these incremental changes could accumulate to produce the observed monotonic, quasi-continuous increase in hypsodonty (Figs. 5B, 6), much as has been proposed to explain evolution of hypsodonty and enamel complexity in proboscideans since the late Miocene in response to aridification and exploitation of developing grassland ecosystems (Lister, 2013). Another possible driver relates to dust delivery from volcanic sources. Brief intervals of relatively high volcanic activity (~100 and ~400 ka, which are all too short for us to resolve fully with our current data, may have induced brief periods of enhanced aridity and/or volcanic activity (i.e. exceed a threshold), and hypsodonty will increase slightly as a result of natural selection. As long as there is no selection for decreased hypsodonty index during anomalously low aridity and/or volcanic activity (“no reversal effect”), hypsodonty will appear to increase smoothly.

Fig. 6. Schematic illustration of Ratchet effect to explain progressive increases in hypsodonty index during quasi-static climate, volcanic activity, or both. Oscillations in physical conditions will occasionally induce brief periods of anomalously high aridity and/or volcanic activity (i.e. exceed a threshold), and hypsodonty will increase slightly as a result of natural selection. As long as there is no selection for decreased hypsodonty index during anomalously low aridity and/or volcanic activity (“no reversal effect”), hypsodonty will appear to increase smoothly.

6. Conclusions

1) Oxygen isotopes of tooth enamel confirm minimal changes from 43 to 21 Ma (Kohn et al., 2004, 2010, this study), except for late Deseadan fossils possibly during the Mi1 glaciation at ~23 Ma. These data can be reconciled with a moderate temperature drop (3–4 °C) across the Eocene–Oligocene transition, and an additional ~4 °C drop during Mi1, although changes to moisture source are alternatively possible. Oxygen isotopes in fossil bone suggest a mean alteration temperature of ~16 °C, with no resolvable change from ~40 to ~20 Ma, including across the Eocene–Oligocene transition.

2) Pedogenic carbonate δ13C values from the initial stages of the Eocene–Oligocene climatic transition imply lower pCO2 (430 ± 300 ppmv) than estimated from marine proxies (800–1000 ppmv).

3) Our isotope-based estimates of mean annual precipitation combined with previous work on paleosols indicate relatively wet but aridifying conditions at ~45 Ma, and dry conditions (MAP ~450 mm/yr) from 43 to at least 31 Ma, with a possible drop in MAP at 27.2 Ma. MAP increased to ~800 mm/yr by 20 Ma. A relatively static climate between ~43 and ~20 Ma is consistent with relatively constant floral compositions (Strömberg et al., 2013) and reconstructed Leaf Area Indices (Dunn et al., 2015).

4) A dry Patagonia during the Eocene and Oligocene may have served as a positive feedback to protracted global cooling and decreased pCO2 via production and delivery of dust to Southern Ocean, promoting enhanced productivity, particularly of silicifiers (e.g., Diester-Haass and Zahn, 1996; Coxall et al., 2005) and drawdown of atmospheric CO2 (Zhang et al., 2013).

5) If hypsodonty is an adaptation to dust and aridity (e.g., Fortelius et al., 2002; Damuth and Janis, 2011), then it evolved relatively slowly among Patagonian notoungulates, spanning over 20 Ma after the initiation of dry environments. Such protracted evolution may be explained by the Ratchet evolution model, in which small oscillations in the physical environment, for example from variations in climate or upwind volcanic activity, within an otherwise relatively static environment drive small morphological shifts that accumulate over time.

Acknowledgments

We thank Paul Koch for suggesting the Ratchet to explain evolution of hypsodonty in the context of relatively constant climate and two reviewers for incisive comments, including primary sources for the
Ratchet model. Funded by NSF grants EAR0842367 for instrumentation, EAR0819837 and EAR1349749 to MJK, DEB1110354 to RED and CAES, EAR0819910 to CAES, EAR0819842 to RHM, a FONCYT grant to AAC, and the LSAMP program at BSU.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.palaeo.2015.05.028.

References

