1. Error in Pb fractionation factor (FPb_{25}) for double spiked (202Pb-205Pb) samples

Because of the artificial nature of the 202Pb and 202Pb tracer isotopes, a unique algebraic expression for the linear lead fractionation factor as the coefficient per unit mass difference can be derived from the relationship:

$$R Pb_{25t} = R Pb_{25m} \cdot (1 - 3 \cdot F Pb_{25})$$

(1)

where $R Pb_{25m}$ is the measured 202Pb/205Pb, and the tracer 202Pb/205Pb, $R Pb_{25t}$, is by definition equal to the mass fractionation corrected ratio. Solving for $F Pb_{25}$ yields:

$$F Pb_{25} = \frac{1}{3} \left(1 - \frac{R Pb_{25t}}{R Pb_{25m}} \right)$$

(2)

The error propagation equation for $F Pb_{25}$ may be written as (assuming all errors are uncorrelated):

$$\sigma_{F Pb_{25}}^2 = \left[\left(\frac{\partial F Pb_{25}}{\partial R Pb_{25t}} \right) \cdot \sigma_{R Pb_{25t}} \right]^2 + \left[\left(\frac{\partial F Pb_{25}}{\partial R Pb_{25m}} \right) \cdot \sigma_{R Pb_{25m}} \right]^2$$

(3)

The partial derivatives are calculated as:

$$\left(\frac{\partial F Pb_{25}}{\partial R Pb_{25t}} \right) = \left(\frac{1}{3 \cdot R Pb_{25m}} \right)$$

(4)

$$\left(\frac{\partial F Pb_{25}}{\partial R Pb_{25m}} \right) = \left(\frac{R Pb_{25t}}{3 \cdot (R Pb_{25m})^2} \right)$$

(5)

These partial derivatives and the appropriate variances can then be substituted into eqn. (3) to derive the uncertainty in the lead fractionation factor for double spiked (202Pb-205Pb) samples.
2. Error in U fractionation factor (FU_{36}) for double spiked (233U-236U) samples

Because of the artificial nature of the 233U and 236U tracer isotopes, a simple algebraic expression for the linear uranium fractionation factor, FU_{36}, as the coefficient per unit mass difference can be derived from the relationship:

$$RU_{36t} = RU_{36m} \cdot (1 - 3 \cdot FU_{36})$$ \hspace{1cm} (6)

where RU_{36m} is the measured 233U/236U, and the tracer 235U/236U, RU_{36t}, is by definition equal to the mass fractionation corrected ratio. Solving for FU_{36} yields:

$$FU_{36} = \frac{1}{3} \left(1 - \frac{RU_{36t}}{RU_{36m}}\right)$$ \hspace{1cm} (7)

The error propagation equation for FU_{36} may be written as (assuming all errors are uncorrelated):

$$\sigma_{FU_{36}}^2 = \left[\left(\frac{\partial FU_{36}}{\partial RU_{36t}}\right) \cdot \sigma_{RU_{36t}}\right]^2 + \left[\left(\frac{\partial FU_{36}}{\partial RU_{36m}}\right) \cdot \sigma_{RU_{36m}}\right]^2$$ \hspace{1cm} (8)

The partial derivatives are calculated as:

$$\left(\frac{\partial FU_{36}}{\partial RU_{36t}}\right) = \left(\frac{1}{3 \cdot RU_{36m}}\right)$$ \hspace{1cm} (9)

$$\left(\frac{\partial FU_{36}}{\partial RU_{36m}}\right) = \left(\frac{RU_{36t}}{3 \cdot RU_{36m}^2}\right)$$ \hspace{1cm} (10)

These partial derivatives and the appropriate variances can then be substituted into eqn. (8) to derive the uncertainty in the lead fractionation factor for double spiked (233U-236U) samples.
3. ^{238}U sample from isotope dilution against ^{236}U

First establishing the algebraic expression for sample ^{238}U,

$$U^{238}s = [RU^{86}m \cdot (1 + 2 \cdot FU) \cdot (U^{236}t)] - (RU^{86}t \cdot U^{236}t) - U^{238}b$$ \hspace{1cm} (11)

the error propagation equation may be written as:

$$\sigma_{U^{238}s} = \left[\left(\frac{\partial U^{238}s}{\partial RU^{86}m} \right) \cdot \sigma_{RU^{86}m} \right]^2 + \left[\left(\frac{\partial U^{238}s}{\partial RU^{86}t} \right) \cdot \sigma_{RU^{86}t} \right]^2 + \left[\left(\frac{\partial U^{238}s}{\partial U^{238}b} \right) \cdot \sigma_{U^{238}b} \right]^2 + \left[\left(\frac{\partial U^{238}s}{\partial FU} \right) \cdot \sigma_{FU} \right]^2$$ \hspace{1cm} (12)

Note that to dramatically simplify our derivation, we are considering error correlations between the component terms of sample ^{238}U ($U^{238}s$) and the uranium fractionation factor (FU) to be trivial, which is justified given the contrasting dominant error sources in each quantity. The partial derivatives are calculated as follows:

$$\left(\frac{\partial U^{238}s}{\partial RU^{86}m} \right) = U^{236}t \cdot (1 + 2 \cdot FU)$$ \hspace{1cm} (13)

$$\left(\frac{\partial U^{238}s}{\partial RU^{86}t} \right) = -U^{236}t$$ \hspace{1cm} (14)

$$\left(\frac{\partial U^{238}s}{\partial U^{238}b} \right) = -1$$ \hspace{1cm} (15)

$$\left(\frac{\partial U^{238}s}{\partial FU} \right) = 2 \cdot U^{236}t \cdot RU^{86}m$$ \hspace{1cm} (16)
These partial derivatives and variances can then be substituted into eqn. 12 to derive the uncertainty in sample 238U.

4. 238U sample from isotope dilution against 233U

First establishing the algebraic expression for sample 238U,

$$U^{238}s = [RU^{83}m \cdot (1 + 5 \cdot FU) \cdot (U^{233}t)] - (RU^{83}t \cdot U^{233}t) - U^{238}b$$ \hspace{1cm} (17)$$

the error propagation equation may be written as:

$$\sigma_{U^{238}s} = \left[\left(\frac{\partial U^{238}s}{\partial RU^{83}m} \right) \cdot \sigma_{RU^{83}m} \right]^2 + \left[\left(\frac{\partial U^{238}s}{\partial RU^{83}t} \right) \cdot \sigma_{RU^{83}t} \right]^2$$

$$+ \left[\left(\frac{\partial U^{238}s}{\partial U^{238}b} \right) \cdot \sigma_{U^{238}b} \right]^2 + \left[\left(\frac{\partial U^{238}s}{\partial FU} \right) \cdot \sigma_{FU} \right]^2$$ \hspace{1cm} (18)$$

Note that to dramatically simplify our derivation, we are considering error correlations between the component terms of sample 238U ($U^{238}s$) and the uranium fractionation factor (FU) to be trivial, which is justified given the contrasting dominant error sources in each quantity. The partial derivatives are calculated as follows:

$$\left(\frac{\partial U^{238}s}{\partial RU^{83}m} \right) = U^{233}t \cdot (1 + 5 \cdot FU)$$ \hspace{1cm} (19)$$

$$\left(\frac{\partial U^{238}s}{\partial RU^{83}t} \right) = -U^{233}t$$ \hspace{1cm} (20)$$

$$\left(\frac{\partial U^{238}s}{\partial U^{238}b} \right) = -1$$ \hspace{1cm} (21)$$
\[
\left(\frac{\partial U^{238s}}{\partial FU} \right) = 5 \cdot U^{233t} \cdot RU^{83m} \tag{22}
\]

These partial derivatives and variances can then be substituted into eqn. 18 to derive the uncertainty in sample ^{238}U.